A New Method for the Preparation of Bis(bistrimethylsilylmethyl)tin(ll) Sn[CH(SiMe₃)₂]₂ and Its Molecular Structure has been Determined by Gas Electron Diffraction. Prediction of Non-planar, trans-Folded Ground State Structures for Digermene (Ge₂H₄) and **Distannene (Sn,H4)**

Torgny Fjeldberg,a Arne Haaland,*b Michael F. Lappert,*c Birgitte E. R. Schilling,b Ragnhild Seip,b and Andrew J. Thornec

^a*Department of Chemistry, University of Trondheim NLHT, Trondheim, Norway*

^b*Department of Chemistry, University of Oslo, Blindern, Oslo 3, Norway*

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN7 9QJ, U.K.

Reduction of SnCl₂R₂ [R = CH(SiMe₃)₂] (Li₂C₈H₈) provides SnR₂, which in the gas phase (electron diffraction) is a V-shaped monomer with $<$ CSnC 96(1) $^{\circ}$ and Sn–C 224(1) pm; *ab initio* M.O. calculations predict non-planar *trans*-folded equilibrium structures for the ethene analogues Ge_2H_4 and Sn_2H_4 .

 $Bis(bistrimethylsilylmethyl)tin(II)$ $SnR₂$ $[R = CH(SiMe₃)₂]$ **(1)** is monomeric in cyclohexane or benzene solution (by cryoscopy) and in the gas phase (by mass spectroscopy). $1,2$ In the crystalline phase SnR_2 forms dimers, Sn_2R_4 , which may be regarded as ethene analogues. The synthesis of the disilene $Si₂(mesityl)₄$ has recently been reported by West and co-workers.³

 $SnR₂$ has previously been made only from Sn^H precursors: $(SnCl₂)$, or $Sn[N(SiMe₃)₂]$, We now show that it is available from a Sn^W starting material. Treatment of $SnCl_2R_2$ with $Li₂(cot)$ (cot = $C₈H₈$) (1 mmol) as a saturated solution (0.24) mol dm⁻³) in diethyl ether readily yields SnR_2 . $SnCl_2R_2$ is prepared from SnCl,, 2LiR, and tetramethylethylenediamine in diethyl ether.

We have recorded the electron diffraction pattern of monomeric $SnR₂$ with reservoir and nozzle temperatures of about 120° C and determined the molecular structure. Structure refinements were based on a model of C_2 symmetry defined by three bond distance< (Sn *C,* Si *C,* and C-H), five valence angles, and three torsional angles, see (1). Least-squares refinements gave Sn-C $224(1)$ and Si-C $189(1)$ pm (mean

Sn-C 224(1) pm. \leq CSnC 96(1)².

value); \langle CSnC 96(1), \langle SnCSi 109(1), and \langle SiCSi 113(1)[°]. The other structure parameters were unexceptional.

The $Sn-C$ bond distance is about 10 pm longer than in SnMe₄, 214.4(2) pm.⁴ A somewhat smaller difference is found between Sn-N bond distances in $Sn[N(SiMe₃)₂]$, and $Sn(NMe₂)₄, 209(1)⁵$ and 204.5(7) pm,⁶ respectively. In the Sn^{II} diamide the \leq NSiN angle is 96[°]. The longer Sn-X bonds and smaller \langle XSnX angles in the Sn¹¹ compounds may be rationalized by assuming that the electron lone pair

 (2)

Sn-C 228(3) pm. \langle CSnC 112[°]. Sn-Sn 276.4(2) pm. $\theta = 41^{\circ}$.

For (4): Ge-H 158 pm. \lt HGeH 107°. Ge-Ge 230 pm. $\theta = 40^\circ$.

Figure 1. Variation in SCF energy for C_2H_4 , Si_2H_4 , and Ge_2H_4 with fold angle θ , where θ is the angle between the metal-metal bond and the $MH₂$ plane of each monomer unit.

orbital has predominantly s-character, while the Sn-X bonding orbitals have mainly p-character.

An X-ray crystallographic study has shown $SnR₂[R=CH-$ (SiMe₃)₂] to be *dimeric* in the solid phase (2).¹ The structure is non-planar, *trans*-folded, the angle θ between the Sn-Sn bond and the **SnC,** plane of each monomer unit being about 41". The Sn-Sn bond distance in the dimer is indistinguishable from the single Sn-Sn bond distance in hexaphenylditin, $277(1)$ pm.⁷ This is in contrast with the short C=C bonds in ethene derivatives and the $Si=Si$ bond reported for $Si₂$ - $(mesity)_{4}$ ³. It is further noteworthy that the Sn–C bond distance in $Sn₂R₄$ is indistinguishable from that in the monomer and significantly longer than in $SmMe₄$, while the C-C single bond in C_2Me_4 is *shorter* than in CMe₄, 150.5(2)⁸ and 153.7(3) pm, respectively.9

We plan to carry out structure determinations on GeR_2 and Ge_2R_4 . In the meantime we are exploring the structure and bonding in GeH_2 , Ge_2H_4 , SnH_2 , and Sn_2H_4 by means of *ab initio* M.O. calculations¹⁰ with better than double zeta basis.¹¹ The calculated equilibrium structures of $GeH₂$ and Ge,H, are shown in **(3)** and **(4).** The experimental value for the Ge-H bond distance in GeH₄ is 152.5(1) pm¹² and for the Ge-Ge single bond in Ge_2H_6 240.3(3) pm.¹³ The structures are clearly related to those of $SnR₂$ and $Sn₂R₄$, though the Ge-Ge single bond in Ge_2H_4 appears to be somewhat shortened through π -bonding. If the molecule is constrained to a planar conformation the Ge-Ge bond distance decreases to 220 pm which seems reasonable for a Ge-Ge double bond, and the energy is about 12 kJ above that of the equilibrium conformation. Exploratory calculations on GeMe, and $Ge₂Me₄$ give similar results.

In Figure 1 we show how the calculated SCF energy of C_2H_4 , Si_2H_4 , and Ge_2H_4 varies with the fold angle θ . The potential energy (PE) surface of C_2H_4 shows a clearly defined minimum at the planar ($\theta = 0^{\circ}$) conformation. The potential well for Si_2H_4 is, however, very wide; only when $\theta > 20^\circ$ is $PE > kT$ at room temperature.¹⁴ For Ge_2H_4 the curve develops distinct minima corresponding to a trans-folded C_{2h} conformation. Calculations on Sn_2H_4 which are still in progress have yielded similar results; the energy of a transfolded model is at least 18 kJ mol⁻¹ below that of a planar model, It seems therefore that the stability of the non-planar form of the ethene analogues $Si₂H₄$, $Ge₂H₄$, and $Sn₂H₄$ increases with increasing atomic number of the metal.

We thank the S.E.R.C. and Dow Corning (Barry) for a C.A.S.E. grant to A.J.T. and the N.T.N.F. for a grant to B.E.R.S.

Received, 23rd August 1982; Corn. I022

References

- 1 D. **E.** Goldberg, D. H. Harris, M. F. Lappert, and **K.** M. Thomas, *J. Chenr. Soc., Chein. Commun.,* 1976, *256.*
- 2 P. J. Davidson, D. H. Harris, and M. F. Lappert, *J. Chem. Soc., Dalton Trail,.,* 1976, 2268.
- 3 R. West, M. J. Fink, and **J.** Michl, *Science,* 1981, **214,** 1342; American Chemical Society Regional Meeting, June 1982, Midland, Michigan, **U.S.A.**
- 4 M. Nagashima, H. Fujii, and M. Kimura, *Bull. Chem. Soc. Jpn.,* 1973, **46,** 3708.
- *5* M. F. Lappert, P. P. Power, **M.** J. Slade, L. Hedberg, **K.** Hedberg, and V. Schomaker, *J. Chem. Soc., Chem. Commun.*, 1979, 369.
- 6 L. V. Vilkov, N. A. Tarasendo, and **A.** K. Prokofev, *Zh. Strukt. Khitn.,* 1970, **11,** 129.
- 7 H. Preut, H. J. Haupt, and F. Huber, Z. Anorg. Allg. Chem., 1973, **396,** 8 1.
- 8 **I.** Tokue, T. Fukuyama, and K. Kuchitsu, *J. Add. Struct.,* 1974, **23,** 33.
- 9 **B.** Reagley, D. P. Brown, and J. **J.** Monaghan, *J. Mol. Struct.,* 1969, **4,** 233.
- 10 J. Almlöf, K. Faegri, Jr., and K. Korsell, *J. Comput. Chem.*, 1982, **3,** 385.
- 11 S. Huzinaga, personal communication ; T. H. Dunning, *J. Chem. Phys.*, 1970, 53, 2823; A. Strömberg, O. Gropen, and U. Wahlgren, personal communication.
- 12 H. W. Kattenberg, W. Gabes, and A. Oskam, J. Mol. *Spectrosc.,* 1972, **44,** 425.
- 13 B. Beagley and J. J. Monaghan, *Trans. Faraduy Soc.,* 1970, **66,** 2745.
- 14 Similar results on $Si₂H₄$ have already been reported by others: K. Krogh-Jespersen, *J. Phys. Chem.*, 1982, 86, 1492; H. Lischka and H.-J. Köhler, *Chem. Phys. Lett.*, 1982, 85, 467; R. **A.** Poirier and **J.** D. Goddard, *ibid.,* 1981, **80,** 37; I,. C. Snyder and *Z.* R. Wagsernian, *J. Am. Chetn.* Soc., 1979, **101,** 5222; **E.** F. Roelandt, D. F. van de Vondel, and G. P. van der Kelen, *J. Organonref. Chetn.,* 1979, **165,** 151; R. Daudel, R. E. Kari, R. A. Poirier, J. D. Goddard, and I. G. Csizmadia, J. *Mol. Struct.,* 1978, **50,** 115.